home *** CD-ROM | disk | FTP | other *** search
-
-
-
- DDDDLLLLAAAASSSSDDDD7777((((3333SSSS)))) DDDDLLLLAAAASSSSDDDD7777((((3333SSSS))))
-
-
-
- NNNNAAAAMMMMEEEE
- DLASD7 - merge the two sets of singular values together into a single
- sorted set
-
- SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
- SUBROUTINE DLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, ZW, VF, VFW, VL, VLW,
- ALPHA, BETA, DSIGMA, IDX, IDXP, IDXQ, PERM, GIVPTR,
- GIVCOL, LDGCOL, GIVNUM, LDGNUM, C, S, INFO )
-
- INTEGER GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL, NR, SQRE
-
- DOUBLE PRECISION ALPHA, BETA, C, S
-
- INTEGER GIVCOL( LDGCOL, * ), IDX( * ), IDXP( * ), IDXQ( * ),
- PERM( * )
-
- DOUBLE PRECISION D( * ), DSIGMA( * ), GIVNUM( LDGNUM, * ),
- VF( * ), VFW( * ), VL( * ), VLW( * ), Z( * ), ZW( * )
-
- IIIIMMMMPPPPLLLLEEEEMMMMEEEENNNNTTTTAAAATTTTIIIIOOOONNNN
- These routines are part of the SCSL Scientific Library and can be loaded
- using either the -lscs or the -lscs_mp option. The -lscs_mp option
- directs the linker to use the multi-processor version of the library.
-
- When linking to SCSL with -lscs or -lscs_mp, the default integer size is
- 4 bytes (32 bits). Another version of SCSL is available in which integers
- are 8 bytes (64 bits). This version allows the user access to larger
- memory sizes and helps when porting legacy Cray codes. It can be loaded
- by using the -lscs_i8 option or the -lscs_i8_mp option. A program may use
- only one of the two versions; 4-byte integer and 8-byte integer library
- calls cannot be mixed.
-
- PPPPUUUURRRRPPPPOOOOSSSSEEEE
- DLASD7 merges the two sets of singular values together into a single
- sorted set. Then it tries to deflate the size of the problem. There are
- two ways in which deflation can occur: when two or more singular values
- are close together or if there is a tiny entry in the Z vector. For each
- such occurrence the order of the related secular equation problem is
- reduced by one.
-
- DLASD7 is called from DLASD6.
-
-
- AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
- ICOMPQ (input) INTEGER
- Specifies whether singular vectors are to be computed in compact
- form, as follows:
- = 0: Compute singular values only.
- = 1: Compute singular vectors of upper bidiagonal matrix in
- compact form.
-
-
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-
-
-
- DDDDLLLLAAAASSSSDDDD7777((((3333SSSS)))) DDDDLLLLAAAASSSSDDDD7777((((3333SSSS))))
-
-
-
- NL (input) INTEGER
- The row dimension of the upper block. NL >= 1.
-
- NR (input) INTEGER
- The row dimension of the lower block. NR >= 1.
-
- SQRE (input) INTEGER
- = 0: the lower block is an NR-by-NR square matrix.
- = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
-
- The bidiagonal matrix has N = NL + NR + 1 rows and M = N + SQRE >=
- N columns.
-
- K (output) INTEGER
- Contains the dimension of the non-deflated matrix, this is the
- order of the related secular equation. 1 <= K <=N.
-
- D (input/output) DOUBLE PRECISION array, dimension ( N )
- On entry D contains the singular values of the two submatrices to
- be combined. On exit D contains the trailing (N-K) updated
- singular values (those which were deflated) sorted into increasing
- order.
-
- Z (output) DOUBLE PRECISION array, dimension ( M )
- On exit Z contains the updating row vector in the secular
- equation.
-
- ZW (workspace) DOUBLE PRECISION array, dimension ( M )
- Workspace for Z.
-
- VF (input/output) DOUBLE PRECISION array, dimension ( M )
- On entry, VF(1:NL+1) contains the first components of all
- right singular vectors of the upper block; and VF(NL+2:M) contains
- the first components of all right singular vectors of the lower
- block. On exit, VF contains the first components of all right
- singular vectors of the bidiagonal matrix.
-
- VFW (workspace) DOUBLE PRECISION array, dimension ( M )
- Workspace for VF.
-
- VL (input/output) DOUBLE PRECISION array, dimension ( M )
- On entry, VL(1:NL+1) contains the last components of all
- right singular vectors of the upper block; and VL(NL+2:M) contains
- the last components of all right singular vectors of the lower
- block. On exit, VL contains the last components of all right
- singular vectors of the bidiagonal matrix.
-
- VLW (workspace) DOUBLE PRECISION array, dimension ( M )
- Workspace for VL.
-
-
-
-
-
-
- PPPPaaaaggggeeee 2222
-
-
-
-
-
-
- DDDDLLLLAAAASSSSDDDD7777((((3333SSSS)))) DDDDLLLLAAAASSSSDDDD7777((((3333SSSS))))
-
-
-
- ALPHA (input) DOUBLE PRECISION
- Contains the diagonal element associated with the added row.
-
- BETA (input) DOUBLE PRECISION
- Contains the off-diagonal element associated with the added row.
-
- DSIGMA (output) DOUBLE PRECISION array, dimension ( N ) Contains a
- copy of the diagonal elements (K-1 singular values and one zero)
- in the secular equation.
-
- IDX (workspace) INTEGER array, dimension ( N )
- This will contain the permutation used to sort the contents of D
- into ascending order.
-
- IDXP (workspace) INTEGER array, dimension ( N )
- This will contain the permutation used to place deflated values of
- D at the end of the array. On output IDXP(2:K)
- points to the nondeflated D-values and IDXP(K+1:N) points to the
- deflated singular values.
-
- IDXQ (input) INTEGER array, dimension ( N )
- This contains the permutation which separately sorts the two sub-
- problems in D into ascending order. Note that entries in the
- first half of this permutation must first be moved one position
- backward; and entries in the second half must first have NL+1
- added to their values.
-
- PERM (output) INTEGER array, dimension ( N )
- The permutations (from deflation and sorting) to be applied to
- each singular block. Not referenced if ICOMPQ = 0.
-
- GIVPTR (output) INTEGER The number of Givens rotations which took
- place in this subproblem. Not referenced if ICOMPQ = 0.
-
- GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 ) Each pair
- of numbers indicates a pair of columns to take place in a Givens
- rotation. Not referenced if ICOMPQ = 0.
-
- LDGCOL (input) INTEGER The leading dimension of GIVCOL, must be at
- least N.
-
- GIVNUM (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
- Each number indicates the C or S value to be used in the
- corresponding Givens rotation. Not referenced if ICOMPQ = 0.
-
- LDGNUM (input) INTEGER The leading dimension of GIVNUM, must be at
- least N.
-
- C (output) DOUBLE PRECISION
- C contains garbage if SQRE =0 and the C-value of a Givens rotation
- related to the right null space if SQRE = 1.
-
-
-
-
- PPPPaaaaggggeeee 3333
-
-
-
-
-
-
- DDDDLLLLAAAASSSSDDDD7777((((3333SSSS)))) DDDDLLLLAAAASSSSDDDD7777((((3333SSSS))))
-
-
-
- S (output) DOUBLE PRECISION
- S contains garbage if SQRE =0 and the S-value of a Givens rotation
- related to the right null space if SQRE = 1.
-
- INFO (output) INTEGER
- = 0: successful exit.
- < 0: if INFO = -i, the i-th argument had an illegal value.
-
- FFFFUUUURRRRTTTTHHHHEEEERRRR DDDDEEEETTTTAAAAIIIILLLLSSSS
- Based on contributions by
- Ming Gu and Huan Ren, Computer Science Division, University of
- California at Berkeley, USA
-
-
- SSSSEEEEEEEE AAAALLLLSSSSOOOO
- INTRO_LAPACK(3S), INTRO_SCSL(3S)
-
- This man page is available only online.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 4444
-
-
-
-